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Experimental study of time and frequency properties of 
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I V Kurchatov Institute of Atomic Energy, Moscow, 123182 USSR 

Received 21 February 1989 

Abstract. The angular dependences of the time and frequency parameters of a single-crystal 
collective nuclear resonance were studied in a unified series of measurements and compared 
with the resonance parameters of an isolated nucleus. It was shown that, when approaching 
the Bragg angle (eB), the coherent character of gamma radiation interaction with the nuclear 
system in a crystal causes drastic changes of collective resonance parameters. A sharp 
reduction of the nuclear system response time-from 230 i. 10 ns for an isolated nucleus to 
40 * 10 ns at the Bragg peak-takes place. The nuclear resonance width increases from 
3.5r0 (r, is the natural width) to 20 ? 0.5r0.  The resonance energy changes non-mono- 
tonically with the angle of incidence of radiation on the crystal and deviates from the 
resonance energy of an isolated nucleus by (2.0 rfr 0.5)r0 as a maximum. The excitation 
spectra of the collective nuclear gamma resonances have an asymmetrical shape. The sign 
of the asymmetry changes when crossing the Bragg angle position. 

The properties of the collective nuclear excitations were analysed with the theory of 
Kagan, Afanas’ev and Perstnev, as well as with that of Kagan, Afanas’ev and Kohn. 

1. Introduction 

A nuclear target in Mossbauer spectroscopy is usually considered as a set of independent 
resonantly absorbing and scattering centres that are concentrated within a sample 
space. In terms of this assumption, the presence of other resonant nuclei in the near 
neighbourhood does not influence the state of each isolated nucleus nor its behaviour in 
the scattering process. The physical reasons for such an assumption are related to the 
fact that direct inter-nuclear interactions in the solid state are practically absent. In the 
independent-nuclei model, the resulting scattering cross section turns out to be merely 
the sum of resonant cross sections relating to all scattering centres (forward scattering 
is not meant here). 

As a rule, the approximation considered is quite satisfactory for the description of 
real situations, but appears to be deficient in some cases. The fact is that in a system of 
identical nuclei, where gamma radiation can interact resonantly with any nucleus, the 
gamma-radiation field is common to all nuclei. Therefore, for this reason alone the 
nuclei cannot be regarded as totally independent. Under definite conditions, excited 
states can appear that represent a dynamically coupled system of radiation field and 
nuclear matrix. Hence, in the general case, a system of identical nuclei should be 
considered as a collective resonator. 

The phase correlations of the excitation probability amplitudes turn out to be essen- 
tial for the occurrence of collective effects in a system of nuclear resonators. As is known, 
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the collective spontaneous emission effect exists in a system of radiators [l], provided 
that the field coherently affects the radiators. In the optical range, where the wavelength 
A is considerably larger than the characteristic inter-atomic distance a ,  this condition is 
easily met. With such a close arrangement of radiators, the wave has almost the same 
phase for all of them. However, in the case of nuclear gamma radiation, the reverse 
relation is valid: A s a .  It seems that in such circumstances one can hardly expect 
collective effects due to possible violation of coherence conditions. But still, even in this 
case there exist situations in which collective effects are possible, as for example, in the 
interaction of radiation with nuclei in a single crystal. Within the crystal space the strict 
regularity in the arrangement of radiators is maintained; thus we can expect a correlation 
of the nuclear excitation phases at various centres [2-lo]. 

Owing to the conservation of phase memory in gamma-radiation scattering from an 
isolated nucleus and to the strict correlation of scattering phases from various nuclei, a 
coherent coupling of nuclear excitations through the radiation field is established in a 
crystal. The excited state, where the gamma-radiation field and the nuclear matrix are 
dynamically coupled, will often be referred to as a nuclear gamma exciton or,  simply, a 
gamma exciton?. It is important that the notion of collective excitation relates to the 
radiative decay channel only, since in the radiationless channel caused by the internal 
electron conversion process, the nucleus that has been excited could be distinguished 
after the scattering process. 

The gamma exciton (as well as the excited state of an isolated nucleus) can be 
characterised by excitation energy, resonance width and lifetime. These parameters for 
a gamma exciton can differ drastically from those for an isolated nucleus. By changing 
the direction of a beam incident near the Bragg angle, one can vary within a wide range 
the dimensions of a nuclear ensemble that responds coherently to the excitation. Far 
from the Bragg angle, the incident radiation excites the nuclei coherently only in a very 
thin crystal surface layer, so that in this case the properties of the gamma exciton 
should be close to those of an isolated nucleus. The largest deviation from the resonant 
parameters of an isolated nucleus can be expected when the nuclear system is excited 
exactly at the Bragg angle, i.e. when the nuclear ensemble, responding coherently, 
reaches maximum dimensions. 

The theory [2,6,  101 has predicted that as a consequence of coherent effects, one 
must observe a broadening of the reflection spectral band in the vicinity of the Bragg 
angle and, also, the speed-up of emission of radiation at the decay of a nuclear excited 
state. The broadening of the spectral band and the speed-up of emission were related 
by the authors to shortening of the lifetime of collective excited states. 

One must note, however, that not only the above-mentioned coherent effects but 
also resonant self-absorption of radiation in bulk samples [13, 141 can lead to reflection 
spectral band broadening and to emission speed-up (see also Appendix). The self- 
absorption makes observation of coherent effects in crystals with defects rather difficult. 

In an early experimental study of the frequency properties of collective nuclear 
excitations [15] the enhancement of a radiative channel in resonant scattering has been 
detected, which manifested itself in considerable broadening of the reflection frequency 
band in a crystal in the close vicinity of the Bragg angle. Also, the reflection intensity 
maximum was shown to be shifted from the isolated-nucleus resonant energy position. 

t There is a definite analogy with the other elementary excitation in the solid state-the light exciton 
(polariton) [ll]. However, there is one principal difference in the collectivisation mechanism. In the latter 
case it is established not only through the radiation field, but mainly through the Coulomb interaction between 
the centres. It is essential also that in the case of a light exciton the relation A * a  holds. It should be noted 
also that the ‘nuclear-exciton’ term, which was introduced earlier in [12] for designation of collective states 
similar to that considered here, does not reveal the crucial role of gamma radiation in the collectivisation of 
radiators in a crystal. 
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The first attempt to measure the time behaviour of the Bragg nuclear scattering of 
gamma radiation from a single crystal was undertaken in [16]. Coherent excitation of 
nuclei in 57Fe203 was obtained with a synchrotron radiation (SR) pulse. The authors of 
[ 161 have reported a speed-up of gamma-photon emission in the Bragg direction after 
the SR flash. Since the role of resonant self-absorption due to crystal defects was not 
determined in this experiment, it is not clear to what extent the reported speeded-up 
emission could really be caused by the coherent response of a nuclear system. 

Comparative measurements of the time behaviour of coherent and incoherent 
gamma-photon scattering in one and the same nuclear system in a crystal have been 
carried out [17]. This enabled one to reveal directly the effect of decay speed-up of 
single-crystal collective nuclear excitations. Time measurements were performed using 
the magnetic resonance shutter technique [18]. In this experiment an incident beam was 
used whose divergence was wide compared to the reflection region of the crystal. Thus, 
the complete set of Bragg modes of collective excitations was formed and the integral 
effect over all incident angles was observed. The first measurements of angular-resolved 
time characteristics of single-crystal collective nuclear excitations were carried out in 
[ 191. The response time as a function of the deviation from the Braggposition of incident 
radiation was measured. The experiment has clearly demonstrated the effect of the 
speed-up decay of the Bragg modes of collective nuclear excitations. 

The measurements of the decay behaviour of a collective nuclear state in a 57FeB03 
crystal, excited by a SR pulse at different positions around the Bragg angle, have been 
performed in [20], where astrong speed-up of the coherent decay was observed. Recently 
the full time evolution of the Bragg scattered radiation from 57Fe203, excited by SR, was 
measured with very small primary beam divergence [21]. The time dependences of the 
de-excitation processes from the crystals excited by SR were in both cases strongly 
modulated by quantum beats, exhibiting the interference of nuclear hyperfine tran- 
sitions. 

The main purpose of this paper was to observe simultaneously the evolution of both 
time and frequency parameters of gamma excitons selectively excited at different angles 
in the Bragg region. The measurements of time and frequency dependences for the same 
sample were carried out. The comparison of measured resonant parameters of gamma 
excitons with those of an isolated nucleus was performed. The experimental data have 
been compared with the results obtained from the theory of coherent interaction of 
gamma radiation with the nuclear system in a crystal [6, lo]. Different simplified theor- 
etical models were analysed. 

2. Experimental scheme, crystal samples and measurement procedure 

To study the time and frequency properties of the Bragg modes of nuclear gamma 
excitons, one should provide selectivity of their excitation and also perform time and 
energy analyses of the scattering process. 

The scheme of the experimental set-up is shown in figure 1. The 14.4 keV 57Co(Cr) 
Mossbauer radiation source (4 mm diameter) was fixed on the transducer and placed 
inside the lead shield. The initial source activity was 1.25 x lo1' Bq. The initial linewidth 
of the source was r,l = 0.18 mm s-'. Ten monthslater at the final stage of the experiment 
the source line was broadened to Ts = 0.23 mm s-l. The cross section of the beam coming 
out from the shield was confined to a diameter of 4 mm by a collimator. The radiation 
beam passed successively through a pair of 57FeB03 crystals, which constituted the 
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Figure 1. Scheme of the experimental set-up in a double-crystal geometry of coherent 
scattering: Si(l11) X 57FeB0,(222). In the gap between the M O s ~ b a u e r ~ ~ C o  source and the 
Si crystal collimator the magnetic resonant shutter assembly is shown with two active 
elements-the 57FeB03 crystals. This assembly was installed for time dependence measure- 
ments only. 

magnetic resonance shutter assembly. The first crystal was placed into a constant mag- 
netic field HCOnSt, and the other one into a pulsed one Hpulse. The shutter provided both 
polarisation and amplitude modulation of gamma radiation. A Si crystal was installed 
on the first axis of the goniometer-0' and served as a collimator, providing gamma- 
beam divergence of 4 after reflection from the (1 11) planes. The polarised, modulated 
and collimated beam was directed onto the 57FeB03 crystal under investigation. 

2.1. Spectrometer and magnetic resonant shutter 

The gamma photons, coherently scattered from the 57FeB03 crystal, were registered by 
a detector, D, installed in the scattering plane at angle 20B with respect to the direction 
ko of the beam incident upon the crystal. A NaI(T1) scintillation detector (diameter 
10 mm X 0.1 mm) with 03)'-85 photomultiplier was used. It was placed at a distance of 
25 cm from the crystal. Thus it recorded predominantly a diffracted coherent beam. The 
gamma-photon signals from the detector were processed by fast timing and slow energy 
analysis circuits. The energy resolution of the spectrometer was 25% for 14.4 keV 
gamma radiation, and the time resolution was 6 ns. A detailed description of the spec- 
trometer network, similar to that applied in the present work, was given in [17,18]. 

To study the time properties of nuclear excitations one should have a time reference. 
For this purpose a magnetic resonant shutter with 57FeB03 crystals as active elements 
was used here. A detailed description of its operation principle was given in [18]. The 
best mode of shutter operation was obtained when the gamma source was in resonance 
with the 57FeB03 crystals. Thus, the problem of resonant adjustment in both the shutter 
and the investigated nuclear system could be solved with a single transducer. The 
strongest modulation of a shutter was obtained at resonance with Am = 0 transitions. 
For this reason all time measurements were performed with the radiation at resonance 
with this transition. 

The shutter was placed in the gap between the gamma source and the Si crystal (see 
figure 1). It provided a fast uncovering of the gamma-ray beam in 10 ns [18] (figure 2). 
Some 720 ns later the shutter was closed. The beam chopping to the initial level (which 
existed for t < 0) lasted 25 ns. The time dependence of the gamma-radiation intensity 
at t > 720 ns has a rather complicated shape caused by the process of spontaneous 
demagnetisation of FeB03 crystals [18,22]. The operation frequency of the shutter was 
0.5 MHz. 
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Figure2. Time dependenceofthe Mossbauerradiationintensitypassed through the magnetic 
resonant shutter. The zero time is marked at the moment when the shutter uncovers the 
radiation flux. (One channel is equal to 7 ns.) 

The modulated gamma-radiation beam enabled us to measure the following: first, 
the time dependence and the characteristic response time zzx following the excitation 
of a nuclear system by the gamma-radiation step (after t = 0); and, secondly, the time 
dependence and the characteristic emission time z,, at coherent de-excitation of a 
nuclear system after chopping of the incident beam (at time t = 720 ns). 

2.2. 57FeB03 crystal 

A 57FeB03 crystal was used for the investigations, since it is close to ideal in its structural 
perfection [23]. The use of such a crystal was a necessary condition for maximum 
enhancement of coherent nuclear excitation effects in which we are interested. The 
isotropic enrichment in 57Fe was 95%. The crystal’s linear dimensions were 6 X 10 mm2 
and thickness L = 0.05 mm. Crystal planes (1 11) were parallel to the surface. The 
perfection of the single-crystal plate was studied by several methods. 

First of all, an x-ray topogram was recorded using the Lang method (the spatial 
resolution was 1 p k ) .  It has shown that both visible defects and macroscopic tensions 
are practically absent in the central part of the crystal. The topogram of the crystal under 
study was given earlier in [23,24]. Data on crystal investigation by the Borrmann effect 
can be found there, also. 

Furthermore, the quality of the 57FeB03 crystal was studied in a double-crystal Bragg 
diffraction FeB03(444) x 57FeB0,(444) geometry using Cu K,, (8.05 keV) x-ray radi- 
ation. The width of an angular reflection curve of the crystal under investigation as 
AO, = 7.0” ? 0.5” in such a geometry. The reflection coefficient was equal to K, = 
0.51 .t 0.01, which is close to values calculated for a perfect crystal. The AO, and K, 
values were measured differentially over the crystal surface with an x-ray beam of small 
cross section: 0.2 x 4 mm’. The error in AOx and K, corresponds to the spread in values 
obtained at different crystal points (except the edges-see below). 

Finally, macroscopic crystal bending was measured in the described double-crystal 
diffraction geometry. For this purpose the relative angular positions of the rocking curve 
maximum at different crystal points were measured using a precision optical bench. It 
turned out that in the larger part of the sample the bending was lower than 2“. At the 
same time a small fraction of the crystal (edges) had a bending more than 5”. In order to 
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provide the necessary selectivity of gamma-exciton excitation, the bent edges were 
screened by a thin Cu foil fixed with wax on the crystal. The larger part of the crystal 
( 5 -  = 0.76, on account of foil shadow) was left open. After fixing the foil the sample was 
tested again to be sure that no additional bending was caused by the screening procedure. 

After these tests the crystal was fixed on the second axis of a goniometer. It was 
oriented at angles close to OB = 10.29’ with respect to a collimated gamma-ray beam 
reflected by Si(l11) crystal. This OB value corresponds to the nearly pure nuclear Bragg 
reflection (222) in the 57FeB03 crystal [15, 171. 

The FeB03 crystals belong to the class of canted antiferromagnets [25]. The magnetic 
moments of Fe atoms are located in the (111) plane of easy magnetisation. The 
Mossbauer spectrum of 57Fe in the FeB03 crystals has a characteristicmagnetic hyperfine 
splitting and consists of six lines [26]. A permanent magnetic field H6,,,, = 50 A cm-’ 
was applied to the 57FeB03 crystal under investigation, which converted it into a single- 
domain state. The field was directed in the crystal plane (1 11) and, at the same time, 
in the scattering plane (k,,, k , )  (figure 1). The nuclear magnetic field was oriented 
perpendicular to the scattering plane. Under such conditions the n-polarised gamma- 
radiation component only interacted with nuclear Am = @ transitions, and the a-polar- 
ised radiation only with Am = t 1 transitions [ 151. 

The Si and 57FeB03 crystals were adjusted in space so that the rotation axes 0 and 
0’ were perpendicular to the scattering plane to a good accuracy. For this purpose the 
angular rocking curves were taken in the Si(l11) X 57FeB03 (222, Am = 0) geometry 
with fine adjustment of the inclination of the 57FeB03 crystal with respect to a scattering 
plane. This fine adjustment was carried out until the narrowest rocking curve (AOy = 
9 . 2 )  with the largest reflected intensity was obtained. 

To show that the self-absorption effects due to structural defects can be neglected in 
the Bragg resonance scattering of gamma photons in a chosen crystal, we have measured 
the absolute reflectivity of the crystal and compared it with the theoretical value for an 
ideal sample. The value of the absolute reflectivity for gamma radiation was determined 
as K ,  = (I,,, - B)/(Zin - B). Here Z,, is the resonant photon flux incident on a crystal, 
Zout is the reflected flux, and B is the background magnitude. In our case it was rather 
low: B < 0.01 count/s. The totalintensityof gamma-photon flux reflected by the Si(l11) 
crystal was I’ = 2.31 t 0.01 count/s (on the day of measurement). Only a fraction of 
this flux hits the 57FeB03 crystal under investigation, installed in the Bragg reflection 
(222). The resonant part of this fraction was determined simply as Zin = fm5(Z’ - Z”) = 
0.77 t 0.03 count/s, wheref, is the recoil-free fraction emitted by the source (f, = 0.73) 
and Z” = 0.92 + 0.05 count/s is the intensity of gamma radiation passed by the crystal 
(the crystal itself was opaque for 14.4 keV radiation). 

The reflected intensity at maximum was measured to be rout = 0.15 t 0.01 count/s. 
Using these data one can obtain the reflectivity value K ,  = 0.20 * 0.02. In fact, K ,  
should be even larger if one takes into account the role of different polarisations in the 
incident radiation. As has been mentioned, the Am = 0 transition is excited by the n- 
polarised component only. The u-polarised component is only scattered due to excitation 
of the wings of neighbouring Am = +1 resonances. The calculations (see details of 
similar calculations in 5 4.1) have shown that under the given conditions the contribution 
of u-polarised component to the scattered radiation intensity does not exceed 20%. 
Hence, the absolute reflectivity for an essentially n-polarised component is not less than 
32%. This value is anomalously high, which shows the strong suppression of the inelastic 
incoherent scattering channels. A greater fraction of the collective nuclear excitation 
energy returns elastically into the radiative channel-at least six times larger than in 
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scattering from an isolated nucleus. The observed reflectivity K,, = 0.20 f 0.02 is very 
close to that predicted by the theory for an ideal crystal. Using the divergence of the 
incident beam (4“) and bending of the crystal ( 2 ) ,  the theory yields K ;  = 0.22. It will 
be recalled that an anomalously high reflectivity has also been observed in earlier 
measurements [27] using a similar crystal. 

All preliminary measurements aimed at testing our crystal perfection assured us that 
the time and frequency characteristics we are going to determine in the Bragg scattering 
are just the nuclear gamma-exciton characteristics. 

2.3. Selective excitation of the Bragg modes 

Measurements of time or frequency properties of the Bragg modes of gamma excitons 
were carried out during a continuous angular scan of the 57FeB03 crystal in the region 
around the Bragg position. The effective counting rate of the Mossbauer photons 
reflected by the 57FeB03 crystal was only about 0.1 count/s. Thus, to obtain information 
with good statistical accuracy the measurements should be performed for a long time. 
In this case there exists a danger of slow uncontrolled temperature drifts of the relative 
angular setting of the 57FeB03 and Si crystals. To suppress the drifts temperature 
stabilisation was provided in a way similar to that in [28]. Also, the measurements were 
divided into rather short repeated cycles. 

One measurement cycle lasted for 48 h. During this period the crystal was turned 
in the range 8, - lo’+ 8, + 10”. The time dependences (or frequency spectra) of 
diffraction were recorded at the passage of each arcsecond. As a result of a 20“ turn, 
20 time (frequency) dependences were recorded, each of them corresponding to the 
excitation of a different group of collective nuclear states. For good statistics the 
measurements were repeated and the data, corresponding to various cycles, were sum- 
med up. The position of the rocking curve maximum was used as a reference angular 
point for alignment of the time (frequency) dependences referring to the same angular 
range, but measured in different cycles. The rocking curves could be obtained easily in 
every cycle after summation of the information in each of 20 dependences. The widths 
of the rocking curves thus obtained in the measurement cycles differed slightly, but not 
by more than 1” (at the average width of 9.5”). The total number of counts at the rocking 
curve peak was about 300 photons. 

To stabilise the relative angular setting of the Si and 57FeB03 crystals within an 
arcsecond for at least 48 h, the goniometer with 57FeB03 and Si crystals was kept at 
constant temperature. For this reason it was put inside a plastic case where a constant 
temperature was maintained, slightly higher than room temperature. Temperature 
control was performed at one point not far from the 57FeB03 crystal. The accuracy of 
temperature stabilisation was 20.1 “C. 

As a result, the two-dimensional data file T ( t ,  8 - e,) was obtained in 50 cycles, 
which represents the intensity of coherently scattered gamma photons as a function of 
two parameters: t ,  the delay of gamma-photon emission from the crystal with respect to 
the zero time; and 8 - OB, the deviation of the incident angle from the Bragg angle. In 
these measurements the gamma source was moving in a constant-velocity mode and was 
tuned to the transition with Am = OinS7FeBO3. In the same manner the two-dimensional 
data file S(E, ,  8 - 8,) representing the intensity of coherent scattering as a function of 
energy, E,, and the relative angle of gamma incidence, 8 - OB,  upon a crystal was 
obtained as a result of 20 measurement cycles. In this experiment the shutter had been 
removed from the beam and the source was moving in a constant-acceleration mode. 
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Figure 3. The intensity of the (222) nuclear Bragg reflection from the 57FeB0,  crystal: 
an example of processing of the angular-differential time response T ( t ,  0 - e,) and the 
Mossbauer spectra S(E,, 0 - 0,). The collimation of the incident beam is4". ( a )  The rocking 
curve for 57FeB0,(222) at resonance with Am = 0 (Eo2),  obtained from T ( t ,  0 - e,) after 
integration over tin the range 200 ns < t < 700 ns. ( b )  The time response of a regular nuclear 
system in the 57FeB0,  crystal following excitation by a nearly rectangular gamma pulse 
(figure 2) in different angular ranges near the Bragg position. (c) The Mossbauer diffraction 
spectra of 57FeB0,  in the fixed angular intervals. Three angular intervals in the Bragg region 
were chosen: (0) the top of the Bragg maximum; ( x )  the slopes of the rocking curve; (0) 
the wings. Full curves: theoretical fit. 

The measured T(t, 8 - 8,) and S(E,, 8 - 8,) files contain information on time and 
frequency properties of different gamma-exciton Bragg modes. 

3. The results of measurements 

3.1, Time and frequency properties of gamma excitons 

The two-dimensional data files T(t, 8 - 8,) and S(E,, 8 - 8,) were used to plot fre- 
quency and time dependences of coherent scattering at the excitation of different 
gamma-exciton modes in the 57FeB03(222) crystal. Let us denote by N the integrals of 
T and S taken in any angular or other intervals and assign them the meaning of intensity 
of coherent scattering. An example of the initial data processing of Tand S files is given 
in figure 3. 
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Figure 3(a) shows the intensity of coherent resonant scattering as a function of the 
angular deviation from the Bragg position for gamma radiation at resonance with the 
Am = 0 transition. It was obtained from T( t ,  8 - 6,) after summation over the time 
interval of 200 ns < t < 700 ns. The curve width is equal to 9.5" i 0.5". It is in good 
agreement with theoretical calculations, which are shown by the full curve (see 0 4.2 for 
details). The same angular curve could be obtained from the S(E,, 8 - 6,) file with E, = 

To illustrate the angular-resolved time dependences of coherent scattering, three 
angular intervals have been chosen (figure 3(a)) :  the first, 7" wide, on the wings of the 
rocking curve; the second, 4 wide, on the slopes of the angular curve; and the third, 3" 
wide, in the immediate neighbourhood of the Bragg angle. Figure 3(b)  shows time 
dependences of coherent scattering in the selected angular intervals (the curves are 
normalised). Within the statistical accuracy achieved in the experiment, no differences 
in time dependences corresponding to symmetrical angular intervals were observed. 
This fact was used to improve the statistical accuracy. Time dependences given in figure 
3(b) are the sums over symmetrical angular intervals. The full curves in figure 3(b) 
present the results of the theoretical calculations (see 0 4.2). 

As clearly seen, the response following the excitation is delayed. Let us determine 
the characteristic response time t z, as an interval between the zero time and the moment 
when the intensity of scattered gamma radiation reaches 1 - ecl = 0.63 of its maximal 
value. It can be seen from figure 3(b)  that the delays differ depending on the Bragg mode 
excited. While approaching the Bragg angle the response time z z, is strongly speeded 
UP. 

When the gamma-photon flux is chopped at the moment t = 720 ns, the emission 
does not stop immediately, but proceeds for a characteristic time rex. As is seen, a 
smaller value of t .& corresponds to a smaller emission time at spontaneous decay, rex. 
The results of time measurements have been presented earlier in [19]. 

Figure 3(c) shows frequency dependences of coherent scattering corresponding to 
gamma-exciton excitation in the angular intervals selected. A drastic change in the 
response spectral band rex is observed when varying the angle of radiation incidence on 
the crystal (as usual, rex has been determined at the peak half-maximum). 

It turned out that, contrary to the time dependences, there exists a substantial 
difference in frequency spectra measured in the angular intervals symmetrical with 
respect to the Bragg position. Figure 4(a) shows the spectra recorded in the regions 4" 
wide with centres deflected by k3.5" from OB. First, a strong asymmetry of the spectral 
lines was observed. The sign of the asymmetry changes when crossing the Bragg angle. 
Secondly, the maximum of reflected intensity is reached not at the resonance energy of 
an isolated nucleus EO2 (the broken lines in figure 4), but at the energy E,,, which is 
either higher or lower than EO2 depending on positive or negative deviation from the 
Bragg angle. 

The data obtained in the measurements, T(t ,  8 - 8,) and S(E,, 8 - OB),  enable us 
to reveal the angular dependences of the gamma-exciton resonance characteristics: (i) 
the gamma-exciton response time zzx(8 - 8,); (ii) the reflection spectral band width 
rex(6 - 8,); and (iii) the relative energy E,, - EO2 at which the maximum of reflection 
intensity is reached. These dependences are shown in figure 5 and illustrate the most 
vivid time and frequency properties of gamma excitons. The full curves in figure 5 show 
the results of theoretical calculations using values from the experimental conditions. 
The broken curves in the same figure show theoretical curves for a hypothetical case 
when a plane wave of gamma radiation is incident on the crystal. 

E02. 
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Figure4. Mossbauer diffraction spectra measured in two symmetrical angular intervals about 
the Bragg position: (a) -5.5" < O  - OB < -1.5"; ( b )  1.5" < 0 - O B  < 5.5". 

3.2. Comparison with the resonant parameters of an isolated nucleus 

The chain lines in figure 5 show the levels that correspond to the values of time and 
frequency parameters of an isolated nucleus. These data were obtained experimentally 
in the study of incoherent scattering of gamma rays in a crystal. In these experiments 
the conversion electrons were detected. The measurement technique and procedure are 
described in [29]. 

The response time of a nucleus excited at resonance by quasi-monochromatic radi- 
ation was measured to be z o* = 230 -+ 10 ns. In [29], t o* was identified with the nuclear 
lifetime measured under conditions of excitation by quasi-monochromatic radiation. It 
exceeds the 57Fe isomer proper lifetime to = 141.1 ns inherent in spontaneous decay 
conditions. 

As seen from figures 3(b) and 5(a)  even at distance +11.5" away from the Bragg 
angle, where the coherent scattering intensity is small (figure 3 ( a ) ) ,  the characteristic 
response time of the nuclear system z ,*, = 170 5 30 ns is less than the response time of 
an isolated nucleus t $ = 230 -+ 10 ns, though it does not differ much. When approaching 
the Bragg position the characteristic response time reduces strongly and in the close 
neighbourhood of the Bragg angle decreases down to the value of 40 -+ 10 ns. Despite 
the limited angular resolution of the experiment (4" is the beam divergence and 2" is the 
crystal bending), the response time of the nuclear system turned out to be six times 
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shorter than that of an isolated nucleus. As seen from figure 3(b) ,  in the de-excitation 
after radiation chopping at the moment t = 720 ns the gamma-photon emission time also 
reduces when approaching the Bragg angle. 

According to the energy-time uncertainty principle, the reduction of response time 
(or emission time) must be accompanied by the increase of reflection spectral band. As 
seen from figure 5(b) ,  at distance +11.5" away from the Bragg angle the nuclear system 
response takes place in an energy band slightly wider than the ordinary nuclear resonance 
width. However, when approaching the Bragg angle the reflection band width sharply 
increases and reaches the value of 20 f 0.5ro. 

The observed angular dependence of frequency and time parameters of nuclear 
resonant Bragg scattering and their essential difference from similar scattering charac- 
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teristics for an isolated nucleus directly indicate the great significance of coherent 
radiative coupling of nuclear resonators in a crystal. This suggests the use of the nuclear 
gamma-exciton concept. 

3.3. Principal results of the experiment 

The data given in this section demonstrate the following fundamental properties of 
gamma excitons: 

(i) The lifetime of a gamma exciton is less than that of an isolated nucleus and 
decreases when the Bragg position is approached. 

(ii) The reflection spectral band of gamma excitons is broadened in the region around 
the Bragg angle. 

(iii) The characteristic gamma-exciton energy differs from the resonance energy of 
an isolated nucleus. 

(iv) The shape of a gamma-exciton spectral line is asymmetric; the asymmetry 
changes sign when crossing the Bragg angle position. 

It will be recalled that the properties (ii) and (iii) have been observed initially in [15] 
(the asymmetry of the peak shape in the experimental spectra was not manifested due 
to scarce statistics). Property (i) was first demonstrated in [17, 191. 

The gamma-exciton features outlined in this section will be discussed later in 0 5. 
But let us first compare the present experimental data with the theory. 

4. Comparison of experimental results with theory 

4.1. Gamma-excitons spectra 

To calculate the Mossbauer diffraction spectra in "FeB03(222), the following 
expression for the coherently scattered radiation amplitude in the Bragg geometry has 
been used [6]: 

where 

with 

vi; = a s ~ a ~ ~ , ~  + O . ~ ~ ~ ~ ~ ~ ~ ~ , ~ ~ [ C O S ( ~ B ~ ) ] ~ ~ - ~ ~ .  (4.3) 

The sign before the root was chosen so that 1 R'(E, a) j G 1. In (4.1) we have used the 
following notation: E is the gamma-radiation energy; the upper index s labels the eigen- 
polarisationsof radiation (n, a): a = -2 sin(26,)AB; A B  = 0 - 6, is the deviation from 
the Bragg angle; goo and gt l ,  gio are the scattering parameters in the equations of the 
dynamic theory of diffraction, which are proportional to the amplitudes of coherent 
scattering from a unit cell in the forward direction and at the Bragg angle, respectively. 
The sum in (4.2) is proportional to the coherent amplitude of nuclear resonant scattering 
from a 57FeB03 unit cell. Indexl numbers all six hyperfine nuclear transitions in "FeB03 
with energies Eo[. Vi;  is the nuclear structural-polarisational tensor, which is expressed 
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by (4.3) in the case of (222) reflection. As seen from (4.3), the resonances with Am = 
0 ( 1  = 2,5) are excited by the n-polarised component of radiation only. The a-polarised 
component excites the remaining resonances ( I  = 1 , 3 , 4 ,  6) with Am = k l .  Equation 
(4.3) is valid only in the case when the magnetic field on the nuclei is perpendicular to 
the scattering plane, which corresponds to the experimental conditions. 

The procedure of calculation of go( l )  for 57FeB03 was described in [15]. The values 
go(l)  thus obtained turned out to be larger than similar values given in [15], e.g. g0(2) = 
3.23 X This is due to a higher isotropic enrichment in "Fe of the j7FeB03 crystal 
involved. 

The scattering parameters (4.2) also contain the added quantities xim = (xi,)' + 
i(xi,)", which are proportional to the coherent amplitudes of electronic scattering from 
a crystal unit cell. For the (222) reflection in 57FeB03 the following values have been 
used here: xb = -0.82 x x&, = 1.9 x l oT7 ,  ( x ~ ~ ) ' '  = 1.65 x = 
(x~l)"cos(28B)[15]and(x~~)' = 0.3 x = (xil)' CO@&). Itisseenthatthelargest 
Bragg electronic scattering parameter (x&)" is two orders of magnitude smaller than the 
nuclear resonance ones. 

When calculating the Mossbauer diffraction spectrum the amplitude of radiation 
scattered from a crystal (4.1) must be squared modulo and averaged over the source 
spectrum &(E - E,) as well as over the angles of incidence: 

= -2(A8 -+ 3") sin(20B). 
The source spectrum &(E - E,) was assumed to contain a single Lorentzian line with 
maximum at E, and width Ts = 2 X 0 .  The angular integration was performed in the 23'' 
interval around each point A8 = 8 - OB displayed in figure 3(a). The angular range +3" 
took into account the incident beam divergence (4") and the crystal bending (2"). Some 
results of the comparison of calculated and experimental spectra are shown in figures 
3-5 (the calculated spectra were summed up over the same angular points as the 
experimental ones). In all cases the experimental dependences are fitted quite well by 
the calculated curves. From that, one can conclude that the Mossbauer spectra detected 
in the Bragg range have a shape essentially different from the Lorentzian one as the 
theory predicts. 

4.2.  Time dependence of the nuclear coherent response 

To calculate the time evolution of coherent nuclear resonant scattering, the formalism 
of response functions [9, 101 was used. The calculations were performedfor the idealised 
case of stepwise excitation only. The time evolution in the case considered is given by 
the expression derived in [29]: 

T(t, A 8 )  2 Re  ( 1' dt '  G s ( t ' ,  a) . Hs*( t ' ,  a)  (4.5) 
s=Jr,u 0 

Here 

and 

where Gs(t,  a) is the response function [9, 101. I Gs(t, a) l 2  shows the time dependence of 
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gamma-radiation emission at decay of the state excited by a very short pulse. When 
deriving equation (4.5) in [29] the source spectral distribution was taken into account 
and the gamma-radiation flux was assumed to be uncovered instantaneously. From (4.1) 
and (4.6) it is seen that Gs((t, a) has no longer simple exponential dependence as in the 
case of an isolated nucleus [29]. 

In the case when the electronic scattering gives a contribution to the diffraction along 
with the nuclear resonant one, the value R S ( w ,  a) f 0. Since the part of Rs(E,  a)  related 
to electronic scattering does not depend on energy, it is convenient to separate it out: 

R s ( E ,  a) = R S ( E ,  a) + R s ( m ,  a) 
R s p ,  a) = 0. 

T(t, AO) - E l R S ( m ,  a)I2O(t) + 2 R e  

In view of equation (4.8) the general expression (4.5) takes the following form: 

Gs(t’ ,  a)[Hs*(t’, a) 
s=n.u 

+ R s * ( m ,  a) exp(iE,t’/h - Tst /2h)]  dt ’  . 1 (4.9) 

O(t )  is a unit stepwise function. The values Gs(t, a) and Hs((t, a) were calculated numeri- 
cally. It should be noted that only one term with I = 2 (transition Am = 0) was taken into 
account in sum (4.2). The contribution of neighbouring resonances could be neglected 
because of the large distance between them. It will be recalled also that this transition 
was excited by the n-polarised radiation component only. 

The averaging of the time evolution of the coherent response over the angles of 
incidence was performed in a way similar to that used in calculations of the Mossbauer 
diffraction spectra. 

An example of the comparison of computed and measured time dependences of 
diffraction T(t, AO) is given in figure 3(6). The experimental dependences are fitted 
fairly well by the calculated curves. The full curve in figure 3(a) represents the angular 
dependence of scattered radiation which was obtained from T(t, AO) at any time t, when 
the steady-state diffraction regime was achieved. 

Using the calculated time and frequency dependences T( t ,  AO) and S(E,, AO) aver- 
aged over the 23’’ intervals, the theoretical functions t , * , ( O  - O B ) ,  rex(O - &) and 
E,,(O - OB) - Eo2 were obtained and plotted in figure 5. The broken curves in these 
figures show similar functions calculated for an incident plane wave of gamma radiation. 

One should point out in conclusion that all calculated time and frequency charac- 
teristics of collective nuclear excitations are in good agreement with the corresponding 
experimental values. 

5. Discussion of gamma-exciton properties 

5.1. Radiative corrections and the role of self-absorption 

As is well known [30,31], the energy of a nuclear excited state (as well as of an atom) 
changes due to interaction with a field of virtual photons and becomes equal to Eo = 
E ,  + 6E.  The radiative self-energy SE is added to the self-energy Eo of inter-nucleon 
interaction in a nucleus. Along with this, the energy level of a nuclear excited state is 
smeared, so that the energy distribution in the excited state acquires Lorentzian shape 
with width TI .  The Lorentzian distribution corresponds to the exponential law of de- 
excitation with characteristic radiative lifetime z1 = h/T1. Together with the radiative 
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decay channel there exists a channel of internal conversion caused by the interaction of 
a nucleus with its electronic shell. This gives additional broadening of the level, r2. 
Hence, the total width is equal to To = rl + r2, and the characteristic nuclear lifetime 

The excitation in a system of identical nuclei, produced by a single resonant gamma 
photon, is non-localised: it spreads over the entire system. Radiative corrections to this 
collective excited state can be quite different from those in the case of isolated excitation. 
These corrections change drastically in coherent conditions. The new radiative cor- 
rections should result in new values for the lifetime of a collective excited state, for its 
energy width and for its excitation energy. 

The radiative corrections are not zlways seen directly in the observed Mossbauer 
spectra and time dependences. For one- and two-dimensional nuclear systems any 
change in the linewidth and characteristic emission time is attributed to the radiative 
corrections only [SI. But for three-dimensional system it is not the case since the effect 
of resonant self-absorption plays some part and causes distortion of Lorentzian energy 
dependence and exponential de-excitation law (see Appendix). For that reason the 
true data concerning the energy and time parameters of excitations in bulk media are 
concealed. 

In order to reveal factors influencing the spectral and time dependences of collective 
nuclear excitations in bulk media, let us consider some simplified theoretical models as 
an approach to the real situation. 

zo = h/ro.  

5.2. Gamma-exciton parameters in a pure nuclear matrix 

Let us assume that only the nuclear subsystem of a crystal interacts with gamma radiation. 
We shall also suppose the hyperfine splitting to be absent. In this case 

x b  = 0 

TOP 
E - Eo + i rO/2 '  g z m  = -go 

Let us calculate first of all the energy position of maximum reflectivity. We shall 
assign to it the meaning of the gamma-exciton energy. 

5.2.1. Gamma-exciton energy. Let us introduce the dimensionless parameter 9 = 
(E - Eo)/To + g o / a .  Substituting (5.1) into (4.1) one obtains after simple trans- 
formations 

It is seen from (5.2) that the coherent scattering amplitude R(S2, a) satisfies the relation: 
R ( 9 ,  a) = -R*(-Q, a). (5.3) 

Hence, it appears that the diffraction spectrum in a three-dimensional nuclear crystal 
lattice, S(Q, a), which is equal to iR(9 ,  a)i2, is symmetrical about the point 9 = 0. One 
can easily show that the centre of symmetry Q = 0 corresponds to the maximum of an 
excitation spectrum. Thus, for radiation incident upon a nuclear crystal near the Bragg 
angle, the maximum reflectivity is reached at the energy 

At large deviations from the Bragg angle when /a[ S go, the E,, value approaches the 
= Eo - rogo/a* (5.4) 
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resonant energy of an isolated nucleus, Eo. At the same time, it can be seen from (5.2) 
that the scattering amplitude in this limiting case acquires the ordinary resonance energy 
dependence -(E - Eo + iro/2)-l, However, near the Bragg point the deviation of E,, 
from Eo is large and varies inversely with a while having the same sign as A 8 .  

It is interesting to note that at the energy E = E,,, when Q = 0, the scattering 
amplitude R(0, a), equation (5.2), has a purely imaginary value just as in the case of 
scattering from an ordinary resonance: 

= ir( a). go R(0, a) = i 
a / 2  f ( a y 4  + g ;) 1’2 

At the exact Bragg angle position a = 0 the energy dependence in (5.2) disappears. 
Also the whole energy incident on a crystal is reflected elastically without losses 
IR(Q,O)I’ = 1, despite the existence of a strong inelastic channel in scattering from an 
isolated nucleus. The latter effect is a manifestation of the suppression of inelastic 
channels in a nuclear reaction [ 4 , 6 , 2 7 ] .  
5.2.2. Gamma-exciton energy width. Let us consider now the dependence of collective 
nuclear resonance width on the angle of incidence of gamma radiation on a crystal. The 
condition for determination of the resonance width rex at half-maximum of the energy 
peak is written in the following form: 

Here Q, is the unknown phase, and r(a) was determined in (5 .5) .  Solving equation (5.6) 
one obtains 

2 + r 2 ( a )  
2r(a> 

2 A Q  = (go/a) 7 sin Q, 

(5.7) 

Let us consider again two limiting cases. Close to the Bragg angle, when Ia/gol G 1, 
one gets the following expression for rex: 

3 
T e x ( 4  = fi rogo/l..I ( 5 . 8 )  

i.e. the collective nuclear resonance width tends to infinity when approaching the Bragg 
angle. At a large distance from OB, when /a/gol % 1, the collective nuclear resonance 
width rex tends to the natural width of an isolated nucleus To: 

5.2.3. Gamma-exciton time characteristics. To simplify calculations let us determine the 
value zex, the characteristic emission time at spontaneous decay of some definite gamma- 
exciton mode, rather than the response time z:, measured in the experiment. We shall 
assume that the nuclear system was excited by a short radiation pulse. In this case the 
time dependence of emission in the Bragg angle direction is proportional to IG(t, & ) I 2  
[lo]. For a pure nuclear diffraction the function G ( t ,  a)  is equal to [lo] 

re&) = ro(i + g ; / 2 a 2 ) .  (5  9 9) 

(5.10) 

1? = .go/@ - 2x00). 
J 1  is the Bessel function of the first order. Under the condition xoo = 0 one obtains the 
following formula for the time dependence of emission at coherent de-excitation: 



Collective nuclear excitations in a single crystal 10579 

(5.11) 

At small deviations from the Bragg angle, when la/gol < 1, the exponent in (5.11) can 
be omitted. Then the characteristic emission time at the gamma-exciton decay is equal 
to 

(5.12) 

i.e. the characteristic time tends to zero linearly when approaching the Bragg angle. At 
a large distance from OB, when I a/goI 9 1, the exponential function makes the principal 
contribution. Then 

(5.13) 

t e x  (a )  = 1 . 9 1 ~ 0  Ial/go 

t ex (a )  = t o ( 1  - g;/4a2). 
One should note that in both limiting cases the relation 

t e x ( a > r e x ( a >  - toro = f i  (5.14) 

holds, which represents the energy-time uncertainty relation. 

5.3. Gamma-exciton parameters with an account of electronic scattering 

In the previous section the gamma-exciton parameters were calculated within the frame- 
work of a model that took into account the interaction of gamma radiation with the 
nuclear system only. The interaction with electrons was neglected. This approximation 
outlines qualitatively the resonance broadening and the decay speed-up observed in the 
experiment. But it does not describe the details of experimental dependences obtained. 
First, the calculated gamma-exciton parameters E,,, rex and re, are not constrained at 
the exact Bragg position. Secondly, the approximation mentioned does not describe the 
gamma-exciton spectral asymmetry (figure 4). 

Let us consider a further approximation that takes electronic scattering into account. 
We shall conserve the pure nuclear diffraction conditions, i.e. coherent scattering at 
non-zero angles proceeds, as before, due to the nuclear resonant interaction only. But 
at the same time the coherent electronic scattering in the forward direction will be taken 
into account. It means now that xoa # 0. The expression for the coherent scattering 
amplitude, obtained within the framework of this model, is similar to (5.2),  but with 
substitution of a by & + 2ix;;O, where ct = a - 2x&,. The real part x&, gives rise to a 
small angular shift of the Bragg peak only. The influence of the imaginary part on time 
and frequency properties of collective nuclear excitations is more substantial. For 
example, one can easily show that, by introducing the non-zero value of x;;O, expression 
(5.4), which defines the energy position of the reflection intensity maximum, acquires a 
new form: 

(5.15) 

The validity of equation (5.15) is limited by the requirement that is usually implemented 
in the experiment, namely, 2xb$ 4 go. As follows from (5.15), the maximum deviation 
from an isolated-nucleus resonance is reached at a distance &* = k2(gox;;O)’/z off the 
Bragg position. The maximum deviation itself is equal to E,, = ~0.25r0(g0~; ;0) ’ /2 .  
Thus, there is no longer divergence at ct = 0 and equation (5.15) describes qualitatively 
the experimental dependence in figure 5(c). 
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The account of xb$ means physically that the photo-electric absorption by atoms is 
included into consideration. Within the framework of the model considered earlier in 
95.2, the incident radiation in the close neighbourhood of the Bragg angle could 
penetrate infinitely into the crystal. The penetration depth is proportional to 
A(2/algo)-1/2 [27] in that case. But now the penetration is limited by electronic absorption 
and does not exceed a value proportional to A/x&. The estimations show that for this 
reason the expressions obtained for gamma-exciton parameters in § 5.2 appeared to be 
inaccurate in the angular range l & l  S (goxb)1/2. At the same time for I c i  > (gox&,)'/2 
where the depth of the coherent nuclear resonant interaction is smaller than the photo- 
electric absorption depth, all conclusions of the previous section are valid. 

The limitation imposed by electronic absorption on the coherent nuclear resonant 
interaction volume also inhibits the infinite growth of the collective nuclear resonance 
width at the exact Bragg position. One can show by a method similar to that employed 
in 0 5.2.2 that, in the presence of electronic absorption, the gamma-exciton resonance 
width reaches its maximum value at & =  0. In particular, in the case 
/3 = ( 2 ~ & / g , ) ' / ~  < 1, which is usually implemented in the experiment, it is equal to 

(1 + 16/3/3) ' I 2 .  
1 + 3/3 v=- 
3 v 2  

(5.16) 

At the same angular point ci. = 0 the characteristic emission time t,, reaches its minimal 
value. To calculate z,,(O) we shall use expression (5.10). In view of this expression, the 
time evolution of emission from a nuclear system, excited at the Bragg angle, takes the 
form 

(5.17) 

z B  = z02x&/g0, 
Here I&) is the nth-order Bessel, function of imaginary argument. As follows from 
(5.17), the characteristic emission time is 

t e x ( o )  = 1.09toxh/go. (5.18) 

It is seen that the limitation, imposed by photo-electric absorption on the volume 
of coherent nuclear interaction, substantially influences collective nuclear excitation 
parameters. 

The inclusion of x& changes not only the resonant parameters but also the shape of 
the collective excitation spectrum. Equation (5.3), which describes the gamma-exciton 
spectrum symmetry in a pure nuclear crystal matrix, is violated immediately when x& 
takes a non-zero value, i.e. as soon as the photo-electric absorption of radiation is 
considered. There exists a single angular position & = 0 when the symmetry is restored. 
When passing through it, the asymmetry changes sign. 

5.4. Gamma-exciton parameters in the induced Borrmann effect conditions 

The approximation considered above and the formulae obtained relate to the so-called 
case of pure nuclear magnetic reflection, when the Rayleigh scattering amplitude is 
suppressed within each group of atoms of the same type. In the experiment considered 
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a nearly pure nuclear reflection was used, which is implemented in a different way-due 
to accidental cancellation of the Rayleigh scattering amplitude within a unit cell [15]. In 
this case the wave fields inside a crystal are built up by the nuclear diffraction in such a 
way that, along with low nuclear absorption, these fields also undergo anomalously low 
electronic absorption. As a result the Borrmann effect is induced [24,32] together with 
the suppression effect. For this reason close to the Bragg angle 1 CY < 2xg,, the radiation 
penetrates into the crystal deeper than in the case of magnetic pure nuclear diffraction 
(but still not as deep as in the case of pure nuclear matrix-§ 5.2). Hence, the region of 
coherent nuclear resonant interaction increases. This means that our experimental case 
is positioned between the models considered in 3 § 5.2 and 5.3. The collective resonance 
width rex(0) increases as compared to (5.16), and the emission time t,,(O) decreases as 
compared to (5.18). In this case the maximum deviation of collective nuclear resonance 
energy E,, - Eo turns out to be larger than that calculated by formula (5.15), and the 
angle at which it is reached is smaller. The calculated dependences corresponding to this 
approximation are shown in figure 5 by the broken curves. 

Thus, the consideration of various models shows that the interaction of radiation 
with an electronic system in the angular range near the Bragg position controls the 
volume of a nuclear system responding coherently to the excitation and, hence, sig- 
nificantly affects the gamma-exciton parameters. 

6. Conclusions 

Collective nuclear excitations play an important part in the resonant scattering of gamma 
radiation in a perfect crystal. The significant role of collective excitations is due to a 
strong time and space correlation between excitation phases in a system containing a 
macroscopic number of regularly arranged nuclei. In the state of correlated resonant 
excitation, strong dynamic coupling is established between the radiation field and the 
nuclear matrix. In these conditions the wave field and the nuclei in a crystal are coupled 
into a unified physical state, which we refer to as a nuclear gamma exciton or in short a 
gamma exciton. Unlike the light exciton, which can be considered to be an analogue of 
a nuclear gamma exciton, one can neglect the direct interaction between the resonators, 
namely the nuclei. The coupling between nuclei is accomplished only indirectly- 
through the radiation field. 

The investigations of gamma-exciton properties in the 57FeB03 crystal show that 
their characteristics, such as excitation energy, resonance width and lifetime, undergo 
considerable changes as the angle of incidence of the gamma radiation varies. The 
evolution of resonant parameters is attributed to changes in a radiative channel of 
interaction only. The 200-fold increase in nuclear resonance radiative width at the Bragg 
angle was observed. This implies that in our experiment the resonance radiative width 
is approximately 20 times greater than the inelastic conversion partial width. The 
increase of a gamma-exciton resonance width was accompanied by a corresponding 
drastic reduction of its lifetime. 

Unfortunately, some interesting questions are beyond the scope of the present 
experimental investigations; for example, the properties of gamma excitons excited very 
far from the Bragg angle. In the off-Bragg angular range (this situation was considered 
theoretically in [5,33]) the course of variation of the resonant properties of a gamma 
exciton is reversed compared to those of an isolated nucleus: the resonance narrows and 
the decay slows down. Far from the Bragg angle the partial radiative width can disappear 
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completely. Since the conversion dominates at low-energy nuclear resonances, the 
disappearance of the radiative width and, hence, the slowing down of the nuclear excited 
state decay are effects that can hardly be observed. So far the narrowing of elastic width 
was detected only indirectly in [34]. 
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Appendix 

The amplitude of elastic resonant scattering from the quasi-discrete level of a nucleus 
has the form 

Here K is the radiation wavenumber. 

defined by the response function G,(t), which is the Fourier transform of (Al) :  
The time dependence of emission during the decay of a nuclear excited state is 

(A2) 
1 

G,(t) = i- exp( -iEot/h - t/2t0)e(t). 
2KZo 

It was shown in [lo] that the time dependence of emission for spontaneous decay 
following excitation by a very short radiation pulse is proportional to /Go(t)12. 

As a rule, the time evolution of decay and the evolution of emission of decay products 
are identified. However, if a decaying nucleus is situated in the bulk medium containing 
resonant nuclei, then the time dependence of emission of decay products is distorted 
compared to the time dependence of a nuclear decay itself. The physical reason for this 
is the resonant self-absorption of gamma-radiation in the medium. 

Let us consider the simple case of incoherent resonant scattering from nuclei filling 
the space on one side of some arbitrary plane. The radiation is incident at angle 
n/2 - 0, onto this plane. The detector records radiation emitted at angle n/2 - 02. If 
the scattering took place from a nucleus located at depth z below the surface, then the 
scattering amplitude can be written in the following form: 

RA(E, z )  = exp i- n(E)  R o ( E )  exp i- n(E) (;, ) 1Z2 1 
y1 = cos e, y2 = cos 02. 

Here n(E) is the complex refractive index, the imaginary part of which describes absorp- 
tion in matter; U, and uph are the cross sections of resonant and photo-electric absorption, 
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respectively; and Nis the number of resonant nuclei in unit volume. When deriving (A3) 
it was assumed that electronic scattering from atoms can be neglected. But the photo- 
electric absorption should be considered, since it determines the maximally possible 
penetration depth of radiation inside a medium. If the matter contains atoms with non- 
resonant nuclei, then their photo-absorption must also be taken into account in (A3). 

In the case under consideration the response function can be calculated analytically 
by using definition (4.6) as well as (A3): 

G;,(t, z )  exp( -Eot/h - t/2t0)J0(2(,urtz/2t0) ' I2)  exp(-pphz/2)6(t) 

~r = arN p p h  = a p h N  

where J,(x)  is the Bessel function of nth order. 
To calculate the time dependence of gamma-radiation emission from the 

contributions of all nuclei should be summed up. For this purpose the value 
should be integrated over z .  We shall get as a result that the intensity o 
following the excitation of a target by a short pulse behaves in time as 

T;(t) - exp[-t(t i '  + t i1)]l0(t/ tA)6(t)  

T A  = to2aph/ar. 

arget , the 

emission 
Gb(t7 Z>l2  

(It should be noted that the characteristic time parameters tA in (A5) and tB in (5.17) 
are identical if coherent and incoherent scattering are considered in the same substance, 
the single crystal for example.) 

Let us assume that the resonant absorption considerably exceeds the photo-electric 
one, i.e. or * a p h .  Then to * tA. 

In the limiting cases, equation (A5) is simplified. For example, for t < tA 

and for t 9 t A  

As is seen that due to resonance self absorption the emission of radiation from the bulk 
target proceeds according to a non-exponential law and considerably faster than an 
excited nucleus decay. It is of interest to compare the time evolution of incoherent 
emission from the bulk target with the coherent one. 

As follows from (5.17), the time evolution of coherent emission from a nuclear 
system, excited at the Bragg angle is described by a function that resembles (A5). 
In particular, immediately after excitation, both dependences have an exponential 
dependence in time. Really, for t  < tB equation (5.17) takes the form 

T(t, & = 0 )  - exp( -2t/tB)e(t). (A8) 
On the other hand, in the time interval t 9 tB the dependences are essentially different. 
The coherent emission proceeds faster and follows the law [9,10] 

Thus, it is seen that in both cases the emission of gamma radiation from the bulk target 
is speeded up, compared to the time dependence of an isolated nucleus decay. The 
physical reasons leading to the emission speed-up are quite different, however. 
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